

Full protection of swine against foot-and-mouth disease by a bivalent B-cell epitope dendrimer peptide vaccine

Esther Blanco David Andreu

Rodrigo Cañas Patricia de León M. Jose Bustos Elisa Torres Miguel Rodríguez-Pulido Marga Sáiz

Conventional FMD vaccines

CONVENTIONAL VACCINES (chemically inactivated viruses)

- + Good protection against antigenically related viruses.
- Its use is instrumental for disease control
- Risk of viral escapes from vaccine production plants
- A cold-chain is required
- Need for differentiation between infected and vaccinated animals
- Antigenic match between field viruses and vaccine strains

"Vaccination to live": recently gained acceptance

- World Organization for Animal Health (OIE) Code:
 - recognized a new category "FMD-free country/zone where vaccination is practised".
 - Reduced the waiting periods to recover the status when vaccination is applied during emergencies.
- Vaccination minimizes the dependence on large-scale culling of animals to control the disease.

Peptide-based vaccines

pros 🕏

- No infectious agent involved
- High structural flexibility. Easily adaptable to new, different strains
- Combination of B and T cell epitopes
- Total differentiation between infected and vaccinated animals (DIVA)
- Safe storage and transport (no cold-chain required)
- Fast, affordable large scale production

cons 🕏

- Most epitopes are conformational (discontinuous)
- conformational epitopes difficult to reproduce by chemical means
- immunogenicity usually needs to be enhanced by: adjuvants multimerization

VP1 GH loop: a B cell antigenic site in FMDV capsid used for peptide vaccines design

VP1 GH loop (site A)

A continuous B cell site that can be mimicked using synthetic peptides

Integrin-Binding Motif (RGD)

Highly variable in sequence: serotype specific

Limited immunogenicity of GH loop linear peptides

An improved synthetic peptide vaccine: pig as a model

activation and memory

<u>Multivalent, dendrimeric scaffolds</u> (dendrimers)

Esther Blanco et al. J. Virol (2000) Esther Blanco et al. J. Virol (2001) Mercedes García-Briones et al. Virology (2004)

The dendrimeric peptide of type C FMDV

Peptide	FMDV protein residues VP1 [136-154]	Sequence YTASARGDLAHLTTTHARH-amide		
В				
T	3A [21-35]	AAIEFFEGMVHDSIK-amide		
B ₄ T*	VP1 [136-154] 3A [21-35]	YTASARGDLAHLTTTHARH-C CH₂CO-K YTASARGDLAHLTTTHARH-C CH₂CO-K YTASARGDLAHLTTTHARH-C CH₂CO-K YTASARGDLAHLTTTHARH-C CH₂CO-K YTASARGDLAHLTTTHARH-C YTASARGDLAHLTTTHARH-C **		

^{*} Thioether linkage(C-terminal)
Arrow indicates a putative cathepsin D cleavage site

Solid, Sterilizing Protection

Neutralizing Ab

Specific IgA in serum and mucosae

FMDV-specific T cell responses

Peptides as vaccines against foot-and-mouth disease virus

Extension to other FMDVs epidemiologically relevant: type O (O UK 2001)

Dissecting the B₄T components responsible for the immunity observed: Improved, cost- effective dendrimeric constructions

- Mouse (screening model)
- Swine

Is tetravalency essential? B₄T vs. B₂T constructs (O UK 2001)

Swiss mice "outbred" (100 µg peptide/mouse)

B epitope: VP1 140-160

T epitope: 3A 21-35

2. Orientation and attachment mode also matter!

Protection conferred in pigs by type O tetra - and bivalent dendrimers (O UK 2001)

2 mg peptide/ 2 doses Montanide ISA 50V2 (commercial oil adjuvant)

thioether linkage (C-terminal)

n = 6 pigs

Total and neutralizing Ab elicited by type O tetra - and bivalent dendrimers

Bivalent dendrimers elicit higher levels of IFNy-producing activated T cells

ELISPOT IFNy

Esther Blanco et al., et al. Antiviral Res. (2016)

Bivalent dendrimer B₂T (mal) elicits long lasting neutralizing antibodies associated with the induction of IFNy-producing T cells

Dendrimers can afford solid FMD protection: ongoing work with this modular approach

- Optimizing conjugation chemistry and inclusion of new T cell epitopes taking advantage of the versatility of the dendrimeric modular approach.
- Incorporation of different B cell peptide sequences in single dendrimers/combination of different dendrimeric molecules

Isotypes of the Ab elicited by type O tetra - and bivalent dendrimers

- This results suggests association between a Th-1 biased isotype balance (lower IgG1/IGg2 ratio) and improved protection
- IgG2 and IgA can enhance T cell responses via an FcR-mediated mechanism